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Compressible Alfven turbulence in one dimension

J. Fleischer and P. H. Diamond
Physics Department, University of California, San Diego, La Jolla, California 92093-0319

~Received 10 March 1998!

We present the simplest extension of the Burgers equation to include the effects of magnetic pressure. For
unity magnetic Prandtl number, an exact solution exists that describes Alfvenic shock waves. For forced
turbulence with arbitrary diffusivities, renormalized perturbation theory is used to show that the only stable,
physically accessible fixed point corresponds to a state of equidissipation. Energy equipartition, however,
requires the equality of the forcing functions. Implications for the spectra of turbulence and self-organization
phenomena in magnetohydrodynamics are discussed.@S1063-651X~98!50109-2#

PACS number~s!: 47.27.2i, 52.35.Ra, 03.40.Kf
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A complete understanding of spatiotemporal interm
tency remains the most elusive problem in turbulence the
Intermittency phenomena, which usually involve coher
structures in space and time, complicate the conventio
wisdom based on scaling arguments, etc. Indeed, inter
tency phenomena arecharacterized by coherency over
ranges of scales~large or small! and higher order~rather than
quadratic! correlations, manifestly at variance with the K4
assumptions of homogeneity, scale similarity, and statist
isotropy. Many attempts to explain these deviations invo
geometric corrections to the energy spectrum but lose to
with the underlying dynamical system. Another route to
sight into the development of structure may be gained fr
simplified models, such as the Burgers equation@1#, which
allows a deeper investigation of the relevant fundame
dynamics. While both dynamical and geometrical a
proaches have been extensively applied to intermittent
drodynamic turbulence@2–5#, only the mean-field scaling
approach has been used for magnetohydrodynamics~MHD!
turbulence, until now@6–8#. Indeed, the field of intermit-
tency phenomena in MHD turbulence is largely unchar
territory, despite its relevance to astrophysics, geophys
and technological applications~e.g., controlled fusion, drag
reduction, etc.!. This is unfortunate from a theoretical view
point as well, since the addition of a magnetic field can
crease the possible pathways to structure formation.

To address these issues, a simplified, analytically tract
model of MHD turbulence is needed. In this spirit, we pr
pose an extension of the Burgers model of compressible fl
turbulence, or ‘‘Burgerlence,’’ to include the effects of ma
netic pressure. The fluid dynamics~in the x̂ direction, for
example! are governed by the momentum equation

]v
]t

1lvv
]v
]x

52lB

]

]x S B2

8pr0
D1n

]2v
]x2 1 f̃ v , ~1!

where n is the kinematic viscosity andf̃ v is a ~optional!
random forcing function.lv andlB are theoretical dials in-
troduced to measure the strengths of the nonlinearities~they
will be set to one at the end of the calculations!. It is as-
sumed that the magnetic pressure (B2)/8p is much greater
than the fluid pressure, and that the density variations
negligible compared with those of the magnetic field~this is
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discussed presently!. The magnetic field itself evolves ac
cording to the induction-diffusion equation, which in on
dimension reduces to

]B

]t
52lB

]~vB!

]x
1h

]2B

]x2 1 f̃ B . ~2!

Here,h5c2/4ps is the magnetic diffusivity,s is the elec-
trical conductivity,lB is the Lorentz force coupling strength
and f̃ B represents random ‘‘seeding’’ of the magnetic field

In the absence of dissipation and forcing, Eqs.~1! and~2!
conserve energy~kinetic plus magnetic! and the magnetic
flux *vB dx. Hence, the model is the simplest possible
of equations that allows Alfvenization, i.e., the interchan
of magnetic and fluid energies, consistent with energy c
servation. The inclusion of compressional evolution of t
fluid density only complicates this simple, basic picture, m
tivating us to assume a constant background density throu
out. By analogy with the Burgers model of compressib
turbulence, Eqs.~1! and ~2! are referred to as the MHD
Burgerlence model.

Without active sources, Eqs.~1! and ~2! represent the
‘‘decay’’ problem of arbitrary initial conditions. For the spe
cial case of equal dissipation,n5h, the system reduces t
two decoupled Burgers equations in the Elsasser varia
v6B. This is not surprising, since in dissipationless MH
Burgerlence, initial value data is propagated along the ch
acteristicsdx/dt5v6vA at the constant characteristic ve
locitiesv6vA , wherevA5AB/(4pn0m). All of the familiar
results from the Burgers equation may be applied to t
special case. In particular, the well-known exact solutio
imply that the system can support Alfvenized shock wav
Note that in hydrodynamic Burgers turbulence, regions
negative velocity gradient steepen into shock singularit
while v́.0 regions smooth out. This asymmetry inv́ evolu-
tion is the origin of the asymmetric probability distributio
function ~PDF! of v́ observed in Burgerlence@9–12#. In the
MHD case, conservation of magnetic flux requires a conc
tration of magnetic field at the velocity shock fronts~limiting
fluid wave steepening through pressure back-reactio!.
Moreover, the relation] t(Bx)'22(vxBx) implies that both
negative andpositive magnetic shocks are possible. Sin
R2709 © 1998 The American Physical Society
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these shocks dominate the energy spectrum of the sy
@13#, magnetic intensity in MHD Burgerlence is inherent
intermittent.

It can be shown that the more general casehÞn is not
integrable. Thus, we proceed directly to the case of no
Burgerlence, where random forcing drives the above sh
production. The presence of forcing highlights several
namic regimes.

~1! f̃ vÞ0, f̃ B50: the fluid is actively stirred, whileB is
convected. For low magnetic fields, pressure back-reactio
negligible, and the system reduces to Burgers advection
passive scalar.

~2! f̃ v50, f̃ BÞ0: the magnetic field has an activ
source and the fluid responds to the induced pressure. O
ously, this is aB2 ~i.e., higher-order! effect.

~3! f̃ vÞ0, f̃ BÞ0: fully driven turbulence.
The ‘‘typical’’ MHD approach is case~1!, in which fluid

forcing at large scales produces a Kolmogorov-type ene
cascade. In Burgers turbulence, small-scale disturbance
rectly affect large-scale structures~through shocks!, so forc-
ing at all scales is the standard statistical tool. Here we
tively excite both fields, treatingv andB5B' as fluctuations
above a uniform, force-free (viB0) configuration.

This broadband forcing, externally imposed or interna
self-generated, replaces the ‘‘inertial’’ range with a range
dynamic turbulence. This view allows the physically inte
esting question, ‘‘Given a turbulent energy spectrum, w
type of forcing will reproduce it?’’ The answer is intimate
related to the dynamics of the system, since the nonline
ties ~common to both the Burgers and higher-dimensio
models! will distort the symmetries and statistics of th
source. Indeed, these nonlinear couplings will gene
asymmetric, non-Gaussian PDF’s, even for a white-no
forcing spectrum. These deviations from normality~e.g.,
shock formation! are the hallmarks of intermittency. Then,
simplify the analysis, we first assume Gaussian noise spe
with ^ f̃ v,B

2 &5Sv,B and ^ f̃ v f̃ B&50, i.e., no cross correlation
The extension to spatially dependent noise will follow.

We are interested in MHD Burgerlence for long times a
large distances. For homogeneous turbulence in the ine
range, there are no intrinsic scale lengths. Dynamical te
will dominate beyond the dissipative lengths, and correlat
functions asymptotically approach simple algebraic for
@14,15#. For example, the velocity autocorrela
tion ^dv2(dx,t)& has the homogeneous form
(dx)2a^dv2(t/dxa)&. Alternatively, v}ka may be viewed
as a nonlinear dispersion relation for the system@16#. To test
the dependence of the various parameters on scale, as
that we change the length scalex→bx. With this similarity
transformation, the other variables scale ast→bat, v
→bcv, B→bdB. The parameters of Eqs.~1! and ~2! thus
become

H lv

lB
J→b@3~a21!#/2H lv

lB
J , H n

hJ→ba22H n
hJ . ~3!

Here we have noted that consistent scaling oflB implies that
c5d. Therefore,v andB scale the same way~necessary for
the conservation of energy!. Moreover, the assumption o
white noise implies that̂ f̃ 2&5* f̃ 2dk dv is invariant to a
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change in scale. Hence,a52c11 and there is only one in
dependent exponent to find. However, there is one more s
ing constraint: invariance under the Galilean transformat
v→v(x2ut,t)1u, B→B(x2ut,t). This symmetry is well
known for ideal MHD, where the ‘‘frozen-in’’ law assures u
that the magnetic field transforms identically with the flu
@17#. Mathematically, however, the invariance arises fro
cancellation between the nonlinearities and the time der
tives, a balance that is not upset by the addition of dissipa
terms. This cancellation is crucially important to perturbati
schemes based on the nonlinear interactions, sinceGalilean
invariance precludes renormalization of the coupling coe
cients@18#. This constraint immediately leads to the scali
exponentsa51,c50. That is,x;t, so the transport is bal
listic rather than diffusive, as in the case of hydrodynam
Burgerlence. Thespeedof propagation, though, can only b
determined through approximation methods.

To explore the dynamics, we employ renormalized pert
bation theory:

vk,v5vk,v
~0! 1lvvk,v

~1! 1lv
2vk,v

~2! 1¯ ,
~4!

Bk,v5Bk,v
~0! 1lBBk,v

~1! 1lB
2Bk,v

~2! 1¯ .

Using standard techniques@14,18#, the perturbation effects
on the Green’s functions may be absorbed into effect
transport coefficients~n andh!. To second order inlv,B , the
renormalized viscosity and resistivity~ask,v→0) are

n t5
1

4p2 E dk8 dv8@lv
2G0

v~k8,v8!uvk8,v8
~0! u2

1lB
2G0

B~k8,v8!uBk8,v8
~0! u2#

→
1

4p FlvSv

n2 1
lBSB

h2 G E
kmin

` dk8

k84 , ~5!

h t5
lB

2

8p2 E dk8 dv8@G0
B~k8,v8!uvk8,v8

~0! u2

1G0
v~k8,v8!uBk8,v8

~0! u2#

→
lB

2

2p~h1n! FSv

n
1

SB

h G E
kmin

` dk8

k84 . ~6!

Here, vk,v
(0) 5G0

v(k,v) f̃ v[@1/(2 iv1nk2)# f̃ v and Bk,v
(0)

5G0
B(k,v) f̃ B[@1/(2 iv1hk2)# f̃ B define the bare~un-

renormalized! propagatorsG0
v and G0

B , and Sv and SB are
the ~white! noise strengths of the forcing functions. An in
frared cutoffkmin has been introduced to prevent the dive
gence of slow modes.

In the inertial range, these turbulent diffusivities domina
the original bare ones. Lettingn→n t and h→h t, Eqs. ~5!
and~6! become self-consistent recursion relations for the
fective viscosity and diffusivity. In terms of the dimension
less interaction parametersU15(lv

2Sv)/@6pkmin
3 (n t )3# and

U25(lB
2SB)/@6pkmin

3 (ht)3#, the fixed points are
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~U1 ,U2!15S 12A12r ,12
2

r
~11A12r ! D , ~7a!

~U1 ,U2!25S 11A12r ,12
2

r
~12A12r ! D , ~7b!

~U1 ,U2!35S 2

11r
,

2r

11r D . ~7c!

Here, the ratio of the noise strengthsr[SB /Sv is the only
independent parameter. Note that 0<r<`. In particular,r
may be greater than one, implying that the first two solutio
may give complex diffusivities. Imaginary components
the transport coefficients suggest nonlinear frequency sh
i.e., the propagation of Alfven waves, so solutions~7a! and
~7b! cannot be ruled out as unphysical,a priori. Solution
~7c! gives strictly dissipative behavior. A simple calculatio
shows that solution~7c! is linearly stable for allr, while ~7a!
and ~7b! are only stable forr>5.3. The question then be
comes one of physical accessibility. In other words, give
set of meaningful initial conditions, which asymptotic fixe
point will the system approach? To determine this conv
gence, we need an analysis of the phase flow in solu
space, i.e., a set of evolution equations for the effective
fusivities.

The dynamical renormalization group yields such a ph
space description by successively summing the modal in
actions over bands of spatial scales. Specifically, the inte
tions in Eqs.~5! and ~6! are performed over a shell of mo
menta kmine

2dl'kmin(12dl)<k<kmin , where d l is
infinitesimal. The system is then rescaled ask→ke2d l . This
is the same scaling as before, withb5ed l . This transforma-
tion establishes differential recursion relations for the tra
port coefficients, which give~to first order ind l )

dU1

dl
53U1F12

U1

2
2S rU 1

U2
D 1/3

U2G , ~8!

dU2

dl
53U2F12

U1~U2 /rU 1!1/31U2~rU 1 /U2!1/3

11~rU 1 /U2!1/3 G . ~9!

The fixed points of these equations are given by the solut
~7!. There are two ranges to consider:~1! r .1, giving one
real and two complex conjugate solutions, and~2! r<1, giv-
ing three real solutions. Since the recursion relations~8! and
~9! are both real, no real initial parameters (U1 ,U2) can
evolve to a complex fixed point. Then, in the first regim
only solution~7c! is physically accessible.

For r<1, there is one positive solution and two negati
ones forU2 . Figure 1 shows the first quadrant of a pha
flow diagram for the representative valuer 5 1

2 . The arrows
indicate the flow under the renormalization transformatio
~8! and ~9!. Note, in particular, that the axes are repello
Thus, for any physical starting point (n,h).0, only the posi-
tive fixed point is accessible. Once again, solution~7c! ap-
pears as the unique infrared fixed point for the system.

Using these results, the turbulent transport coefficients
given by
s

ts,
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n t5h t5FSv1SB

12p G1/3

kmin
21. ~10!

Then, in the inertial range the turbulent fluid viscosity a
magnetic diffusivity are equal. In other words, as the flu
transport rate increases due to nonlinear interactions,
magnetic field is convected along faster as well. Of cour
the enhanced magnetic diffusivity backreacts on the flu
dragging it along at a faster rate. The net result is a bala
between the two effective diffusivities.

However, equality of the turbulent dissipation does n
imply the equipartition of fluid and magnetic energy, as
commonly assumed. A straightforward calculation sho
that the energy spectra are given by

Ev~k![
1

2
r0^ṽ2&k5

1

2
r0F 3p

2~Sv1SB!G
1/3

Svk211C2SB
2/3k21,

~11!

EB~k![
1

2
r0^B̃

2&k5
1

2
r0F 3p

2~Sv1SB!G
1/3

SBk21, ~12!

where C25@(9/2)(12 ln2)15p/)#(12p)1/3 is important
only whenSB@Sv , i.e., when magnetic forcing dominate
the fluid motion through pressure effects. For the more st
dard case of significant fluid forcing, the equipartition
energy only occurs ifSv5SB ~a conclusion that also hold
for spatially dependent noise!. This distinction between
equal dissipation and energy equipartition has been obse
in three-dimensional simulations of incompressible MHD
well @19#.

Note that the rather weak spatial falloff of these spec
indicate the significance of small-scale noise on large sca
In particular, the forcing of small scales present in the whi
noise spectra inhibits shock formation, reducing the wa
number dependence fromk22 to k21. For the more genera
case of spatially dependent noise, only power-law singul
ties Sv,B;k22b are relevant in the asymptotic (k,v→0)
limit. The resulting energy spectra scale asEv,B(k)
;k212(4b/3), a relation that has been verified numerica
@20#. Appropriate values ofb can give Kolmogorov or

FIG. 1. Renormalization phase flow diagram of the dimensi
less interaction parametersU15Sv /@6pkmin

3 (n t )3# and U2

5SB /@6pkmin
3 (h t )3# for the representative valuer[SB /Sv5

1
2 . The

trajectories are defined by Eqs.~8! and ~9!.
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Kraichnan-Iroshnikov~KI ! ~or any other! scaling. This latter
reproduction is particularly interesting, since the KI theo
emphasizes the effect of a large-scale field on small-s
energy transfer~the opposite limit is considered here!. This
distinction is fortunate from the viewpoint of sel
organization phenomena~e.g., magnetic dynamos, shea
induced mean flow, etc.!, since energy transfer from fluid t
field at large scales seems unlikely given the constrain
equipartition. An alternative scenario for a large-scale str
ture is amplification by equidissipation turbulence, follow
by the nonlinear saturation of growth. In time, the satura
state might then relax towards equipartition of energy.

It would be interesting to see if this equidissipation st
is extended beyond the ‘‘inertial’’ range. That is, for no
trivial initial diffusivities, will the system dynamically self-
,’’
G

le

f
-

d

e

adjust to maintainn1n t5h1h t? This would place a fun-
damental constraint on theonsetof intermittency as well. A
related concern is the probability distribution ofv andB for
the general casenÞh. In fully developed MHD Burger-
lence, the equidissipation state leads to PDF asymmetr
the characteristic variablesz65v6vA . Before saturation,
however, the governing statistics remain an open quest
For the generation and maintenance of self-organized st
tures, it is these PDF’s that are needed most. The determ
tion of these distributions and a classification of their as
ciated structures will be the subject of future papers.

We thank A. Gruzinov and T. Hwa for many helpful dis
cussions. This work was supported by the U.S. Departm
of Energy under Grant No. DE-FG03-88ER53275 and
U.S. ONR under Grant No. N00014-91-J-1127.
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