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Compressible Alfven turbulence in one dimension
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We present the simplest extension of the Burgers equation to include the effects of magnetic pressure. For
unity magnetic Prandtl number, an exact solution exists that describes Alfvenic shock waves. For forced
turbulence with arbitrary diffusivities, renormalized perturbation theory is used to show that the only stable,
physically accessible fixed point corresponds to a state of equidissipation. Energy equipartition, however,
requires the equality of the forcing functions. Implications for the spectra of turbulence and self-organization
phenomena in magnetohydrodynamics are discu$S§d®63-651X98)50109-2

PACS numbes): 47.27—i, 52.35.Ra, 03.40.Kf

A complete understanding of spatiotemporal intermit-discussed presenjlyThe magnetic field itself evolves ac-
tency remains the most elusive problem in turbulence theorycording to the induction-diffusion equation, which in one
Intermittency phenomena, which usually involve coherendimension reduces to
structures in space and time, complicate the conventional
wisdom based on scaling arguments, etc. Indeed, intermit-

tency phenomena areharacterized by coherency over B d(vB) B~
+7 W + fB . 2

ranges of scale@arge or small and higher ordefrather than at e X
guadrati¢ correlations, manifestly at variance with the K41
assumptions of homogeneity, scale similarity, and statistical
isotropy. Many attempts to explain these deviations involveHere, n=c?/4mo is the magnetic diffusivitys is the elec-
geometric corrections to the energy spectrum but lose touchical conductivity \g is the Lorentz force coupling strength,
with the underlying dynamical system. Another route to in-andfg represents random “seeding” of the magnetic field.
sight into the development of structure may be gained from In the absence of dissipation and forcing, Eds.and(2)
simplified models, such as the Burgers equafibl) which  conserve energykinetic plus magneticand the magnetic
allows a deeper investigation of the relevant fundamentaflux fvB dx. Hence, the model is the simplest possible set
dynamics. While both dynamical and geometrical ap-of equations that allows Alfvenization, i.e., the interchange
proaches have been extensively applied to intermittent hyef magnetic and fluid energies, consistent with energy con-
drodynamic turbulencg2-5], only the mean-field scaling servation. The inclusion of compressional evolution of the
approach has been used for magnetohydrodynatMetD)  fluid density only complicates this simple, basic picture, mo-
turbulence, until now[6—8]. Indeed, the field of intermit- tivating us to assume a constant background density through-
tency phenomena in MHD turbulence is largely unchartecbut. By analogy with the Burgers model of compressible
territory, despite its relevance to astrophysics, geophysicdurbulence, Eqs(1) and (2) are referred to as the MHD
and technological application®.g., controlled fusion, drag Burgerlence model.
reduction, etg. This is unfortunate from a theoretical view-  Without active sources, Eq$l) and (2) represent the
point as well, since the addition of a magnetic field can in-“decay” problem of arbitrary initial conditions. For the spe-
crease the possible pathways to structure formation. cial case of equal dissipatiom= 7, the system reduces to
To address these issues, a simplified, analytically tractablevo decoupled Burgers equations in the Elsasser variables
model of MHD turbulence is needed. In this spirit, we pro-v +B. This is not surprising, since in dissipationless MHD
pose an extension of the Burgers model of compressible fluiBurgerlence, initial value data is propagated along the char-
turbulence, or “Burgerlence,” to include tr)e effects of mag- acteristicsdx/dt=v*v, at the constant characteristic ve-
netic pressure. The fluid dynami¢m the x direction, for  locitiesv v, wherev 5= \B/(4mnem). All of the familiar

example are governed by the momentum equation results from the Burgers equation may be applied to this
special case. In particular, the well-known exact solutions
v Jv 9 | B2 v~ imply that the system can support Alfvenized shock waves.
—+ —=—Ng— |z—|+v —=+f 1 i i i
pr AU X Ap X 87rp0> vo2 Tl (1) Note that in hydrodynamic Burgers turbulence, regions of

negative velocity gradient steepen into shock singularities,
_ while >0 regions smooth out. This asymmetryzirevolu-
where v is the kinematic viscosity and, is a (optiona)  tion is the origin of the asymmetric probability distribution
random forcing functionA, and\g are theoretical dials in- function (PDF) of v observed in Burgerlend®—-12]. In the
troduced to measure the strengths of the nonlinealftiey = MHD case, conservation of magnetic flux requires a concen-
will be set to one at the end of the calculatipnk is as-  tration of magnetic field at the velocity shock froflisniting
sumed that the magnetic pressuB¥)/8= is much greater fluid wave steepening through pressure back-reaction
than the fluid pressure, and that the density variations ar®oreover, the relatiom,(B,)~ —2(v,B,) implies that both
negligible compared with those of the magnetic fighis is  negative andpositive magnetic shocks are possible. Since
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these shocks dominate the energy spectrum of the systeamange in scale. Henca=2c+1 and there is only one in-
[13], magnetic intensity in MHD Burgerlence is inherently dependent exponent to find. However, there is one more scal-
intermittent. ing constraint: invariance under the Galilean transformation
It can be shown that the more general casév is not v—uv(x—ut,t)+u, B—B(x—ut,t). This symmetry is well
integrable. Thus, we proceed directly to the case of noisknown for ideal MHD, where the “frozen-in" law assures us
Burgerlence, where random forcing drives the above shockhat the magnetic field transforms identically with the fluid
production. The presence of forcing highlights several dy{17]. Mathematically, however, the invariance arises from
namic regimes. cancellation between the nonlinearities and the time deriva-
(1) ?U¢0,?B=o; the fluid is actively stirred, whil® is tives, a balance that is not upset by the addition of dissipative
convected. For low magnetic fields, pressure back-reaction i&rms. This cancellation is crucially important to perturbative
negligible, and the system reduces to Burgers advection of $chemes based on the nonlinear interactions, sBaldean
passive scalar. invariance precludes renormalization of the coupling coeffi-
) vazol ’?f‘B?gO: the magnetic field has an active cients[18]. This constraint immediately leads to the scaling
source and the fluid responds to the induced pressure. Obygxponentsa=1c=0. That is,x~t, so the transport is bal-
ously, this is aB2 (i.e., higher-ordereffect. listic rather than diffusive, as in the case of hydrodynamic
&) ?07&0,?57&03 fully driven turbulence. Burgerlence. Thepeedof propagation, though, can only be

The “typical” MHD approach is casél), in which fluid determined through approximation methods. .
forcing at large scales produces a Kolmogorov-type energ To explore the dynamics, we employ renormalized pertur-
cascade. In Burgers turbulence, small-scale disturbances ation theory:
rectly affect large-scale structuréhrough shocks so forc-

ing at all scales is the standard statistical tool. Here we ac- Vko=00 + N0 #0202 -
tively excite both fields, treating andB=B, as fluctuations ' ' ' ’ 4
above a uniform, force-freev(B;) configuration. ©) 1) 11 262

This broadband forcing, externally imposed or internally Bi,o=BkoTMeBk ot AeBiot

self-generated, replaces the “inertial” range with a range of

dynamic turbulence. This view allows the physically inter- ysing standard techniqué44,18, the perturbation effects
esting question, “Given a turbulent energy spectrum, whapn the Green's functions may be absorbed into effective
type of forcing will reproduce it?” The answer is intimately transport coefficienté» and 7). To second order in, g, the

related to the dynamics of the system, since the nonlinearianormalized viscosity and resistivitgsk, w—0) are
ties (common to both the Burgers and higher-dimensional

modelg will distort the symmetries and statistics of the

source. Indeed, these nonlinear couplings will generate L fdk’ de' TN2GY (K" 0 )@ |2
. . . . — Y 9 )\ G k y ’ ’
asymmetric, non-Gaussian PDF’s, even for a white-noise VT An? '\, Go(K', @ )lvk |
forcing spectrum. These deviations from normalis.g.,
: . i +)\2GB(k/ /)|B(O) |2]

shock formatiohare the hallmarks of intermittency. Then, to BolK @ K o'
simplify the analysis, we first assume Gaussian noise spectra, ,

. e 2 ¢ 1 . . 1 )\USU )\BSB * dk
with (f 5)=S, g and(f,fg)=0, i.e., no cross correlation. ——|—t — —7, (5
The extension to spatially dependent noise will follow. 4m | v 7 Kein K

We are interested in MHD Burgerlence for long times and
large distances. For homogeneous turbulence in the inertial A2
range, there are no intrinsic scale lengths. Dynamical terms Ut:—Bz J dk’ dw’[Gg(k’,w’)lvfg) |2
will dominate beyond the dissipative lengths, and correlation 8m "
functions asymptotically approach simple algebraic forms

vt ’ (0) 2
[14,15. For example, the velocity autocorrela- +Golk 'w)|Bk”w’|]

tion (Sv?(éx,t)) has the homogeneous form 2 S, Ssl (> dk
(%)~ dv?(t/ 6x?)). Alternatively, wxk® may be viewed Sy e —+ —“ PEE (6)
as a nonlinear dispersion relation for the sysfas. To test 7t} v 7 i

the dependence of the various parameters on scale, assume

that we change the length scade-bx. With this similarity Here, v(® =G8(k,w)?UE[1/(Ziw+ sz)]?v and B(k(,)c)u

K,@

transformation, the other variables scale &sb?, v B — ; 2 ;

’ ’ = = — + -
—b®, B—bYB. The parameters of Eq$l) and (2) thus GO(k’T.)fB [V(~ie nkv Nfe (ljgefme the bare(un
become renormalizedl propagatorsGg and Gy, andS, and Sz are

the (white) noise strengths of the forcing functions. An in-
frared cutoffk,,, has been introduced to prevent the diver-
{)‘v]_)b[3(al)]/2{ )\u] [ V} _)baz[ V]_ (3  gence of slow modes.
N A’ (7m U In the inertial range, these turbulent diffusivities dominate
the original bare ones. Letting— ' and »— 7!, Egs.(5)
Here we have noted that consistent scaling gimplies that  and(6) become self-consistent recursion relations for the ef-
c=d. Thereforep andB scale the same wayecessary for fective viscosity and diffusivity. In terms of the dimension-
the conservation of energyMoreover, the assumption of less interaction parametet$1=(AﬁSU)/[ka%in(vt)3] and

white noise implies tha{f2)=[T2dk do is invariant to a  U,=(\3Sg)/[67kS,,(1)?], the fixed points are
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(Ul,U2)1=(1—\/1—r,1—§(1+\/1—r)), (78

1+\/1—r,1—§(1—\/1—r)), (7b) .

(Ug,Uy)p=

2 2r

(Up,Uy)s= T

) (70

Here, the ratio of the noise strengthsSg/S, is the only . .
independent parameter. Note thatO<oo. In particular,r 0.0 0.5 s 10 15
may be greater than one, implying that the first two solutions U= ———
may give complex diffusivities. Imaginary components in OV
the transport coefficients suggest nonlinear frequency shifts

i.e., the propagation of Alfven waves, so solutidiia) and
(7b) cannot be ruled out as unphysical,priori. Solution
(70) gives strictly dissipative behavior. A simple calculation
shows that solutiofi7¢) is linearly stable for alt, while (7a)
and (7b) are only stable for=5.3. The question then be-
comes one of physical accessibility. In other words, given a vi=pl=
set of meaningful initial conditions, which asymptotic fixed

point will the system approgch. To determine th!s Cc’m/(f:‘rThen, in the inertial range the turbulent fluid viscosity and
gence, we need an analysis of the phase flow in solutio

space, i.e., a set of evolution equations for the effective dif_ﬂwagnetic diffus_ivity are equal. In othgr words, as the fluid
fusiviti’es. " transport rate increases due to nonlinear interactions, the
The d)./namical renormalization group yields such a phasmagnetlc field is convgcteq aI(_Jn_g faster as well. Of course,
L . . . e enhanced magnetic diffusivity backreacts on the fluid,
space description by successively summing the modal Interdragging it along at a faster rate. The net result is a balance
actions over bands of spatial scales. Specifically, the integreB :

tions in Eqs.(5) and(6) are performed over a shell of mo- ewgﬁgjgf te\zlvzaelgsc(t)i;/ ?hiif{ﬂfliavsﬁfr?t. dissipation does not
menta  Kpine d~kpnin(1—d)<k<k,,, where & s » & b

infinitesimal. The system is then rescaledkaske™ ®. This imply the equipartition of fluid and magnetic energy, as is

: . : commonly assumed. A straightforward calculation shows
is the same scaling as before, whik-e®. This transforma- Y g

; ) . ) . . that the energy spectra are given b
tion establishes differential recursion relations for the trans- gy sp 9 y

’ FIG. 1. Renormalization phase flow diagram of the dimension-
less interaction parametersUlzsv/[677k3min(vt)3] and U,
=Sg /[67rk,3nin(7;‘)3] for the representative value=Sg /S, = % The
trajectories are defined by Eq8) and (9).

1/3

S,+S
Bl kL (10)

127

port coefficients, which givéto first order inél) 1,1 37 3 . 1
E,(K)=5 po{v =75 po 25,75 S,k +CoSgk
du, U, [ru,\*® (19)
o "3Vl g Yz )
2 5 3r 118
Eg(k)=35 po(B*)=5 Po{— Sgk™t, (12
du, U(U,/rU Y3+ Up(rU, /Uy Y 2 2125, +Se)
— =3Uy 1- 173 . (9 L
dl 1+(ru,/Uy) where C,=[(9/2)(1—1n2)+5=/v3](12m)*? is important

only whenSg>S,, i.e., when magnetic forcing dominates
The fixed points of these equations are given by the solutionthe fluid motion through pressure effects. For the more stan-
(7). There are two ranges to considél) r>1, givingone dard case of significant fluid forcing, the equipartition of
real and two complex conjugate solutions, @@dr<1, giv-  energy only occurs if5,=Sg (a conclusion that also holds
ing three real solutions. Since the recursion relati@sand  for spatially dependent noise This distinction between
(9) are both real, no real initial parameters,(U,) can equal dissipation and energy equipartition has been observed
evolve to a complex fixed point. Then, in the first regimein three-dimensional simulations of incompressible MHD as
only solution(7c¢) is physically accessible. well [19].

Forr=1, there is one positive solution and two negative Note that the rather weak spatial falloff of these spectra
ones forU,. Figure 1 shows the first quadrant of a phaseindicate the significance of small-scale noise on large scales.
flow diagram for the representative value: 1. The arrows In particular, the forcing of small scales present in the white-
indicate the flow under the renormalization transformationgioise spectra inhibits shock formation, reducing the wave-
(8) and (9). Note, in particular, that the axes are repellors.number dependence frokT ? to k1. For the more general
Thus, for any physical starting point(z) >0, only the posi- case of spatially dependent noise, only power-law singulari-
tive fixed point is accessible. Once again, solutido) ap- ties S, g~k 2/ are relevant in the asymptotic,— 0)
pears as the unique infrared fixed point for the system.  limit. The resulting energy spectra scale &, g(k)

Using these results, the turbulent transport coefficients are-k 1~ 4#"3) a relation that has been verified numerically
given by [20]. Appropriate values of3 can give Kolmogorov or
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Kraichnan-lroshnikouKl) (or any othey scaling. This latter adjust to maintairv+ v'= 5+ #'? This would place a fun-
reproduction is particularly interesting, since the Kl theorydamental constraint on thrensetof intermittency as well. A
emphasizes the effect of a large-scale field on small-scalkelated concern is the probability distributionwfandB for
energy transfefthe opposite limit is considered herahis ~ the general case# 7. In fully developed MHD Burger-
distinction is fortunate from the viewpoint of self- lence, the equidissipation state leads to PDF asymmetry in

organization phenomenée.g., magnetic dynamos, shear- the characteristic variables. =v+v,. Before saturation,
induced mean flow, etg.since energy transfer from fluid to NOWeVer, the governing statistics remain an open question.

field at large scales seems unlikely given the constraint of O the generation and maintenance of self-organized struc-

equipartition. An alternative scenario for a large-scale strucUres: 1t 1S these PDF's that are needed most. The determina-

ture is amplification by equidissipation turbulence, followed ion of these distributions and a classification of their asso-
. . . iated structures will be the subject of future papers.
by the nonlinear saturation of growth. In time, the saturated
state might then relax towards equipartition of energy. We thank A. Gruzinov and T. Hwa for many helpful dis-
It would be interesting to see if this equidissipation statecussions. This work was supported by the U.S. Department
is extended beyond the “inertial” range. That is, for non- of Energy under Grant No. DE-FG03-88ER53275 and the
trivial initial diffusivities, will the system dynamically self- U.S. ONR under Grant No. N0O0014-91-J-1127.
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